VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry.

نویسندگان

  • Angela R Hess
  • Elisabeth A Seftor
  • Lynn M Gruman
  • Michael S Kinch
  • Richard E B Seftor
  • Mary J C Hendrix
چکیده

The formation of matrix-rich, vasculogenic-like networks, termed vasculogenic mimicry (VM), is a unique process characteristic of highly aggressive melanoma cells found to express genes previously thought to be exclusively associated with endothelial and epithelial cells. This study contributes new observations demonstrating that VE-cadherin can regulate the expression of EphA2 at the cell membrane by mediating its ability to become phosphorylated through interactions with its membrane bound ligand, ephrin-A1. VE-cadherin and EphA2 were also found to be colocalized in cell-cell adhesion junctions, both in vitro and in vivo. Immunoprecipitation studies revealed that EphA2 and VE-cadherin could interact, directly and/or indirectly, during VM. Furthermore, there was no change in the colocalization of EphA2 and VE-cadherin at cell-cell adhesion sites when EphA2 was phosphorylated on tyrosine residues. Although transient knockout of EphA2 expression did not alter VE-cadherin localization, transient knockout of VE-cadherin expression resulted in the reorganization of EphA2 on the cells' surface, an accumulation of EphA2 in the cytoplasm, and subsequent dephosphorylation of EphA2. Collectively, these results suggest that VE-cadherin and EphA2 act in a coordinated manner as a key regulatory element in the process of melanoma VM and illuminate a novel signaling pathway that could be potentially exploited for therapeutic intervention.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Pathways Molecular Pathways: Vasculogenic Mimicry in Tumor Cells: Diagnostic and Therapeutic Implications

Tumor cell vasculogenic mimicry (VM) describes the functional plasticity of aggressive cancer cells forming de novo vascular networks, thereby providing a perfusion pathway for rapidly growing tumors, transporting fluid from leaky vessels, and/or connecting with endothelial-lined vasculature. The underlying induction of VM seems to be related to hypoxia, which may also promote the plastic, tran...

متن کامل

Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry.

Vasculogenic mimicry (VM) describes the unique ability of highly aggressive melanoma tumor cells to express endothelial cell-associated genes (such as EphA2 and VE-cadherin) and form vasculogenic-like networks when cultured on a three-dimensional matrix. VM has been described in several types of aggressive tumors, including melanoma, prostate, breast, and ovarian carcinomas. However, the molecu...

متن کامل

Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry.

We recently have introduced the term vasculogenic mimicry to describe the unique ability of aggressive melanoma tumor cells to form tubular structures and patterned networks in three-dimensional culture, which "mimics" embryonic vasculogenic networks formed by differentiating endothelial cells. In the current study, we address the biological significance of several endothelial-associated molecu...

متن کامل

Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications.

Tumor cell vasculogenic mimicry (VM) describes the functional plasticity of aggressive cancer cells forming de novo vascular networks, thereby providing a perfusion pathway for rapidly growing tumors, transporting fluid from leaky vessels, and/or connecting with endothelial-lined vasculature. The underlying induction of VM seems to be related to hypoxia, which may also promote the plastic, tran...

متن کامل

Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2).

During embryogenesis, blood vessels are formed initially by the process of vasculogenesis, the in situ differentiation of mesenchymal cells into endothelial cells, which form a primitive, patterned vasculogenic network. This is followed by angiogenesis, the sprouting of new vessels from preexisting vasculature, to yield a more refined microcirculation. However, we and our collaborators have rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer biology & therapy

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2006